Project Overview

Matt Ferner, Mid-Project Workshop, April 17, 2013

Planning for Olympia oyster conservation and restoration in the face of climate change

San Francisco Bay NERR

Matt Ferner Andy Chang Anna Deck

Elkhorn Slough NERR Kerstin Wasson

University of California, Davis

Ted Grosholz Chela Zabin Brian Cheng Jill Bible

State Coastal Conservancy

Marilyn Latta

NERRS Science Collaborative

Dolores Leonard

Intended Users of project results Yes, this is YOU!

www.oysters-and-climate.org

National Estuarine Research Reserve System

Network of 28 NOAA reserves

Nationally coordinated programs:

- Monitoring & research
- Education & training
- Stewardship
- Dedicated to making science relevant and accessible to:
 - Natural resource managers
 - Land owners & public
 - Planners & policy makers

NERRS Science Collaborative funds projects to improve coastal management

Goals of our Olympia oyster project

Sustainable, resilient oyster populations

- 1. Conservation: Identify sites with healthy oyster populations that are resilient to climate-driven changes and other stressors
- 2. Restoration: Identify sites and/or conditions where oyster populations probably could be successfully restored or enhanced

Photo: Anna Deck

A do wron

Photo: Anna Deck

- PARTINE

11

1 + + - | | + - - - - - - - - - - - - - + - - +

Photo: Anna Deck

Photo: Brian Cheng

Shelled larvae released, swim in plankton (7–60 days)

Developing larvae brooded to veliger stage (7–12 days)

Sperm fertilize eggs in female's mantle cavity

Ostrea Life Cycle

Spat settle onto intertidal and shallow subtidal rocks

Males release sperm

Conceptual model

Simplified conceptual model

"A Tale of Two Estuaries"

Urban

High but intermittent input of freshwater

Agricultural Low input of freshwater

High nutrient loading

Study sites span a wide range of physical and biotic variables, making results broadly applicable along the coast

Collaboration with oyster restoration "end-users"

Restoration practitioners

Restoration scientists

Regulatory and **permitting** agencies

Funders of restoration projects

Federal and state **resource agencies**

Non-profit conservation/restoration organizations

Collaborative milestones

Adapting project to formative feedback

- End-user survey (January 2012)
 - Guided site and stressor selection for field and lab studies
- Decision-maker interviews (January 2013)
 - Determined what sorts of decisions are being made and what information and products are used
- Early workshop (April 2013)
 - Examining types of new data being generated by this project and provide feedback on management applications

Collaborative milestones

Adapting project to formative feedback

- Develop and test products (Fall 2013)
 - Gather feedback on formats and content of draft products
- Final workshop (Summer 2014)
 - Train end-users on products and share lessons learned

Questions?

